Ultra-high vacuum scanning tunneling microscopy and theoretical studies of 1-halohexane monolayers on graphite.
نویسندگان
چکیده
A simple model system for the 2D self-assembly of functionalized organic molecules on surfaces was examined in a concerted experimental and theoretical effort. Monolayers of 1-halohexanes were formed through vapor deposition onto graphite surfaces in ultrahigh vacuum. Low-temperature scanning tunneling microscopy allowed the molecular conformation, orientation, and monolayer crystallographic parameters to be determined. Essentially identical noncommensurate monolayer structures were found for all 1-halohexanes, with differences in image contrast ascribed mainly to electronic factors. Energy minimizations and molecular dynamics simulations reproduced structural parameters of 1-bromohexane monolayers quantitatively. An analysis of interactions driving the self-assembly process revealed the crucial role played by small but anisotropic electrostatic forces associated with the halogen substituent. While alkyl chain dispersion interactions drive the formation of a close-packed adsorbate monolayer, electrostatic headgroup forces are found to compete successfully in the control of both the angle between lamella and backbone axes and the angle between surface and backbone planes. This competition is consistent with energetic tradeoffs apparent in adsorption energies measured in earlier temperature-programmed desorption studies. In accordance with the higher degree of disorder observed in scanning tunneling microscopy images of 1-fluorohexane, theoretical simulations show that electrostatic forces associated with the fluorine substituent are sufficiently strong to upset the delicate balance of interactions required for the formation of an ordered monolayer. The detailed dissection of the driving forces for self-assembly of these simple model systems is expected to aid in the understanding of the more complex self-assembly processes taking place in the presence of solvent.
منابع مشابه
Solvent Effects on the Self-Assembly of 1-Bromoeicosane on Graphite. Part I. Scanning Tunneling Microscopy
Self-assembled monolayers of 1-bromoeicosane (BrC20H41) have been investigated at the vacuum-graphite and liquid-graphite interfaces using scanning tunneling microscopy (STM) (Part I) and theory (Part II). Under ultrahigh vacuum conditions at 80 K, STM images show 1-bromoeicosane in a lamellar assembly structure where individual molecules are predominantly arranged with their bromine groups poi...
متن کاملHigh resolution STM imaging with oriented single crystalline tips
Precise knowledge of the atomic and electronic structure of scanning tunneling microscopy (STM) tips is crucial for correct interpretation of atomically resolved STM data and improvement of spatial resolution. Here we demonstrate that tungsten probes with controllable electronic structure can be fabricated using oriented single crystalline tips. High quality of the [001]-oriented W tips sharpen...
متن کاملInteraction of a Self-Assembled Ionic Liquid Layer with Graphite(0001): A Combined Experimental and Theoretical Study.
The interaction between (sub)monolayers of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide [BMP](+)[TFSA](-) and graphite(0001), which serves as a model for the anode|electolyte interface in Li-ion batteries, was investigated under ultrahigh vacuum conditions in a combined experimental and theoretical approach. High-resolution scanning tunneling microscopy (STM)...
متن کاملScanning tunneling microscopy observation of binary monolayers deposited by horizontal lifting method
Langmuir-Blodgett binary monolayers of 10,12-tricosadiynoic acid and saturated fatty acid molecules were deposited onto a surface of highly oriented pyrolytic graphite (HOPG) by the horizontal lifting method. Scanning tunneling microscopy revealed a variety of molecular patterns inside the two-component monolayers. These patterns could be grouped into “phase separation patterns,” in which micro...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 15 شماره
صفحات -
تاریخ انتشار 2005